
Profiling a Prototype Game Engine Based on an
Entity Component System in C++

Dennis Nilsson & Anton Björkman
Malmö University

2019-06-23

Faculty of Science Department of Computer Science
Degree Project in Game Development, 15 credits
Supervisor: Carl Johan Gribel
Examiner: Olle Lindberg
2019-06-23

We would like to thank our supervisor Carl Johan Gribel and examinator Olle Lindeberg for supporting us while writing this thesis at Malmö University.

1

Abstract—This paper introduces a performance comparison
between an object-oriented artifact and a data-oriented artifact
in the context of using an entity component system.

A game engine must handle a variety of game objects which
may share common attributes such as a transformation, collision
and input management. Instead of solving this via multiple
inheritance, entity component system uses composition to de-
couple traits into data (components) and systems operating on
them. Game objects (entities) then serve as containers for all
components necessary for a particular purpose, such as a player
character of a piece of platform. Composition is not necessarily
data oriented however, as evident by recent development in e.g.
the Unity engine [13]. This thesis will implement two artifacts.
One data-oriented artifact using an entity component system. One
object-oriented artifact using an entity component system. These
two artifacts will be stress tested to explore the performance.

Keywords: Data-oriented design, Object-oriented design, En-
tity Component System

I. INTRODUCTION

Games are becoming larger for each generation inevitably
resulting in more computations for the hardware to perform.
One reason for the continuing enlargement of games is the as-
piration of achieving higher realism than previous generations
and or adding more content. Unity is currently component-
based but is introducing a new component which is an entity
component system. This is because component-based systems
did not age well because it did not align data in memory
possibly resulting in low cache coherence [13]. Programming
using an object-oriented design without considering the data
allocation can result in inefficient allocation of data in memory
due to factors such as encapsulation of data, inheritance,
polymorphism. Encapsulation of data refers to bundling of data
and methods operating on that data in the same class. Logic
and data bundled together in a class could lead to low cache
coherence. A low cache-coherence can possibly require more
fetches from memory from the central processing unit (CPU)
affecting performance negatively. A data-driven design such as
an entity component system has the property of aligning data
locally which could lead to improved cache-coherence [10],
[6].

Today’s games require efficient computation of data to
maintain stable frames per second (fps). Unity currently uses
a component-based entity system. This simplifies game de-
velopment since its intuitive to add components to objects. A
consequence of this is, in order to be able to create or destroy
objects in Unity, a global list must be modified containing the
names of each object. This will require a mutex lock. Another
consequence is an extension of the previous consequence. Ev-
ery game object has a C# wrapper pointing to the C++ object.
There is no control over where in memory it is allocated,
meaning it could be anywhere [13]. This could potentially
increase the amount of cache misses. A cache miss happens
when data required for the CPU’s next operation does not
exist in the cache. The CPU then has to fetch new data from
memory in order to continue its work. Data-oriented design
such as an entity component system focuses on aligning data
locally. This can possibly reduce the amount of cache misses.
The purpose of this study is to compare the performance of a
data-oriented artifact and an object-oriented artifact. This will

be done by conducting benchmarks on two artifacts, a data-
oriented and an object-oriented. The benchmarks will record
the time it takes to render frames in milliseconds. By analyzing
the results of the benchmarks, this thesis aims to contribute by
presenting a performance comparison between a data-oriented
or an object-oriented artifact. The relevance of this thesis is
providing important insight for developers when performance
is a prioritized quality attribute. Future work extending our
thesis could be examining the number of CPU cache misses
per benchmark. Furthermore benchmarks in 3D environments
would be of great importance for contemporary developers
within the game industry.

The structure of this paper is as follows: This section,
the introduction. Section II takes up background and related
work. Section III explains the method used conducting the
experiment. Section IV presents results and data. Section V &
VI includes discussion and conclusion. Abbreviations will be
avoided to minimize confusion.

II. BACKGROUND AND RELATED WORK

The complexity of games striving for a realistic experience
graphics-wise are increasing for each generation of consoles.
This derives partly from the increasing amount of polygons
in striving for realistic graphics [12]. It also derives from
the fact that the more data a game scene contains, the more
computation power is required to maintain for example 60
frames per second, as opposed to a game scene containing less
data. Stable frames per second relies on computations being
finished within the time limit of the game loop [15]. As an
example, to be able to maintain ∼60 fps, ∼16 milliseconds
(ms) is the game loops time limit. Not being able to achieve
stable frames per second is considered as game-breaking in
the game industry.

Even though computation power has been increasing since
the arrival of computers, there are complications such as
the difference in clock speed between the CPU and memory
[15]. Factors such as increased power consumption, heat and
thermal losses is contributing in the challenge of developing
faster CPU’s [9]. While CPU’s has mostly increased in clock
speed, DRAM’s been mostly increasing in size. This is a
bottleneck in performance because the clock speeds in CPUs
exceed the clock speeds in DRAM memory [2]. Possibly with
the outcome that the CPU waits a couple of hundred cycles
until the DRAM is able to provide the necessary data for
processing [15]. Since cache storage exist in the CPU’s for
speeding up memory access, developers should take advantage
of that. By utilizing as much of the hardware’s capacity as
possible. As Bob Nystrom mentions, “Modern CPUs have
caches to speed up memory access. These can access memory
adjacent to recently accessed memory much quicker. Take
advantage of that to improve performance by increasing data
locality - keeping data in contiguous memory in the order that
you process it” [15].

Our definition of data-oriented design is the alignment of
data in memory with the goal of increasing data locality.
Furthermore it is the alignment of data in the order that it
will be processed in run-time. A data-oriented design tends

2

to promote data locality. It is important to align data so that
it can be processed after each other in the cache line. By
following a data-oriented design developers could increase the
cache coherence. An object-oriented design unfortunately tend
to spread data randomly across the memory due to storing
objects on the heap, unless a memory pool is implemented
and used. A positive effect of an object-oriented approach is
the readability. For instance a human would be described in
one class, as one object with all the properties a human holds.

This thesis will address the performance of a data-oriented
compared to an object-oriented artifact in a game-like envi-
ronment when using an entity component system. The main
contribution of the benchmarks is displaying the performance
of, in render time in milliseconds per frame, a data-oriented
artifact and an object-oriented artifact using an entity compo-
nent system.
RQ: What is the performance of a data-oriented artifact
compared to an object-oriented artifact simulating a game-like
environment using an entity component system?
Hypothesis: The data-oriented artifact renders frames faster
than the object-oriented artifact depending on better cache
performance.

A. Object oriented

Object-oriented design bring several attributes such as read-
ability, inheritance, polymorphism, encapsulation of data and
reusability. The readability attribute can simplify the com-
munication within a project. Object-oriented design strives
after describing things as humans perceive it. It makes it
easier for team members to familiarize with a project. A
possible negative consequence of object-oriented design is the
potential dynamic allocation of objects in run time. This can be
counteracted by allocating memory for objects before run time.
If there is not already allocated memory for an object, it must
be instantiated leading to the allocation of memory on the heap
of that object. Dynamically allocated objects not making use of
a memory pool might lead to low cache coherence because the
data is not sequential which in turn could lower performance
[8]. Figure 1 shows an illustration of how unaligned data may
look like in memory.

Figure 1: Visualization of unaligned data in memory.

B. Data oriented

Data-oriented design focuses on data and cache coherency
with the aim of having fewer cache misses. The design pattern
is especially important for systems running in real-time such
as game engines [8]. Data is not fast or slow but the hardware
operating on it is. Meaning where it resides in memory matters.
It is comparable to a book where the text is the data and
the reading speed is the processor. If a book has the same
size and two readers, the one finishing first will be the one
reading faster. But imagine if the pages were scrambled in
one of them. The one finishing first would probably be the one
with the coherent text, almost no matter the reading speed of
the readers. Data-oriented design purpose is aligning data in

memory so when code is running the things to process is next
to each other in memory. Like reading a book with coherent
text. Figure 2 shows an illustration of how aligned data may
look like in memory.

Figure 2: Visualization of aligned data in memory.

C. Entity Component System

Entity Component System is an architectural pattern that in
a sense is an inverted object-oriented design. Instead of the
entities using its own implementations of logic, the entities
are acted upon by components which in turn are controlled
through systems [5]. Entity component systems are novel and
there is not much research within the area. Unity is integrating
entity component system as a component in their game engine.
This is due to the ability of retaining the user-friendliness of
the component-based system currently used meanwhile also
gaining performance and parallelism [13]. An illustration of
an entity component system is shown in Figure 3.

Components Collideable Renderable

Systems MovementSystem CollisionSystem RenderSystem

Entities Entity

m

n

1

n

Body

Figure 3: Visualization of an Entity Component System.

D. Related work

In Olof Wallentins paper [22], he analyzes a theoretical
implementation of a component-based entity system. In order
to do this, he made a comparison between several component-
based entity systems. The comparison was made with an
in-house game engine using different C++ component-based
entity systems at the company he was working for. In his
discussion he mentions that a data-oriented approach makes
it harder for developers to understand and or lookup the
associations within the system.

In Kim Svenssons and Tord Eliassons paper [11], they
compare the functional and object-oriented paradigms in terms
of memory usage and execution time. To compare these,
they use Javascript and four algorithms binary search tree,
shellsort, tower of hanoi and Dijkstra’s algorithm. They state
in their discussion that functional programming and object-
oriented programming has different purposes but overall the
functional programming performed worse than object-oriented
programming. Their methodology is similar to ours as they
conduct experiments and measure the different results in
milliseconds. Their experiments involve different input data
ranging from 1000 to 10 000 values.

3

In Walid Faryabis paper [8], he compares a data-oriented
design to an object-oriented design by implementing his own
entity component system. To compare these, he made perfor-
mance tests in Unity with C# which consisted of simulating a
sine wave and game objects with and without animations. Each
test consisted of a set amount entities and measured the frames
per second. The data collected was then calculated to a mean.
His results shows that data-oriented design provides better
average frames per seconds while using his entity component
system. Our thesis will not provide results in form of frames
per second. The results presented in this thesis will be time
taken to render a frame in milliseconds. The chosen metric
for this thesis is motivated by the difference between 90-100
fps not being equivalent to the difference between 20-30 fps.
The difference is easily understood if one divides 1 ÷ 90 and
1 ÷ 20. Our thesis will be using EntityX [20] as the entity
component system and implement a simple game-like artifact
to conduct the experiments. Walid’s comparisons are done with
3D models and animations using OpenGL. This thesis will
make use of SFML (Simple Fast Media Library) to render 2D
graphics [17].

III. METHOD

A. Methodological background

The methodology used in this thesis is experiments [16].
The independent variable in the experiments are the number
of entities. The dependant variable is the time it takes, in
milliseconds, per frame to render. The data generation method
is observation. Each benchmark will be observed from which
the data will be extracted. The data is analyzed quantitatively.

B. Research setting

All experiments were conducted in C++ on Windows 10
Home using the integrated development environment Visual
Studio Community 2017 [14]. The computer’s build-spec
are Intel(R) Core(TM) i5-6300HQ, 16.0GB DDR4 RAM,
128GB SSD, Intel(R) HD Graphics 530. The CPU has 4
cores and 4 threads. The application cpu-z displays that
each core has 128KBytes (4x32KBytes) L1 data cache and
128KBytes (4x32KBytes) L1 instruction cache, 1024KBytes
(4x256KBytes) L2 cache and 6MBytes (4x1.5MBytes) L3
cache. The L1 data and instruction cache are 8-way asso-
ciative. The L2 cache is 4-way associative. The L3 cache is
12-way associative [4].

1) Entity Component System - EntityX: EntityX is a type-
safe C++ entity component system that includes its own bench-
marks and is still maintained by the author [20]. Furthermore a
benchmark suite has been created using up to 2 million entities
in the benchmarks [1]. Projects has been made using EntityX
[3], [19], [21], [7] to create 2D and 3D games. Therefore
EntityX is a suitable framework for this thesis.

2) Simple and Fast Multimedia Library - SFML: EntityX
was chosen as a framework for benchmarking. Since the
benchmarks are measuring time per rendered frame an appli-
cation for rendering also had to be chosen. An example using
SFML was included in EntityX. This example was decided
to be used as a foundation for the benchmarks. The reasons

that motivated the use of SFML is the following. SFML is
a cross-platform and multi-language framework consisting of
five modules: system, window, graphics, audio and network.
SFML has an active community which continues to implement
new features and maintaining old features. SFML has official
bindings for the C, .Net and other languages [17]. Several
games has been made using SFML or some parts of SFML,
some of these can be found on Steam [18].

3) Integrated SFML with EntityX on Windows 10 Home:
EntityX included an example.cc using SFML for rendering.
In this example there is a random function that did not
function properly. The random function worked properly when
rewritten as:
f l o a t r (i n t a , f l o a t b = 0)
{

re turn ((f l o a t) s t d : : r and ()) / RAND_MAX ∗ a + b ;
}

The random function original:
f l o a t r (i n t a , f l o a t b = 0)
{

re turn s t a t i c _ c a s t < f l o a t >(s t d : : r and () %
(a ∗ 1000) + b ∗ 1000) / 1 0 0 0 . 0 ;

}

C. Research approach

The chosen research approach is experiment. Hypothesis:
The data-oriented artifact renders frames faster than the object-
oriented artifact depending on better cache performance. The
experiment is conducted in the following way. The process of
the experiment is observing benchmarks while measuring and
recording the metric render time per frame in milliseconds. 20
benchmarks will be conducted, each with different amounts
of entities, explained in section III-C1. The benchmark results
are compared. The prediction is that data-oriented artifact will
have higher performance. The artifact with the lowest time
per rendered frame is the one with the highest performance.
The experiment is intended to show the performance of our
artifacts.

1) The benchmarks: The benchmarks are implemented
equivalently in regards of code. For the benchmarks, two
artifacts were used. These artifacts implements the following
two different paradigms, data-oriented and object-oriented
design. The differences between the data-oriented artifact and
the object-oriented artifact is shown in Figure 4. The data-
oriented artifact uses three components Body, Collideable
and Renderable. The object-oriented artifact only uses
one component Circle consisting of Body, Collideable and
Renderable. To understand the difference between the artifacts
in memory allocation Figure 5 shows the memory layout for
each one. In the data-oriented artifact the components are
separated and placed one after another. The object oriented
artifact is similar but there is only one component, Circle, that
is aligned after each other. Each benchmark was executed for
the same amount of time with different amount of entities.
The amount of entities tested in the benchmarks range from
500 to 10000 entities in increments of 500 entities. During
the benchmarks each frame’s render time was logged. How
many milliseconds it takes to render one frame has been

4

calculated to an average using the values retrieved from the
benchmarks.

Entity	Component	System	-	Data	oriented	design

Systems

Collisionsystem
Bodysystem
Spawnsystem
Explosionsystem
Rendersystem

Entities

uint64_t

Compontens

Body
Renderable
Collidable

Entity	Component	System	-	Object	oriented	design

Systems

OOPSystem	
{
Collisionsystem
Bodysystem
Spawnsystem
Explosionsystem
Rendersystem
}

Entities

uint64_t

Compontens

Circle
{
Body
Renderable
Collidable
}

Figure 4: Describes the data-oriented and object-oriented
artifact in terms of the Entities, Systems and Components.

Data	oriented	design	memory	layout

Body Body Body Body Body Body Body

Collideable Collideable Collideable Collideable

Renderable Renderable Renderable Renderable

Object	oriented	design	memory	layout

Body Collideable Renderable

Figure 5: Describes the data-oriented and object-oriented
memory layout.

2) Systems: Each system in our artifacts has a specific
task. There are five systems CollisionSystem, BodySystem,
SpawnSystem, ExplosionSystem and RenderSystem. The Col-
lisionSystem handles collisions between the entities. The
BodySystem handles the movement of an entity i.e. their
position and direction. The SpawnSystem spawns entities into
the environment. Each frame the SpawnSystem spawns as
many entities as the total count of the initial value, which is set
at the start of the application. The ExplosionSystem handles
the removal of a colliding entities each frame i.e. making that
entity inactive using a flag. The RenderSystem renders the
entities.

3) Components: As shown in Figure 6: Body, Renderable,
Collideable and Circle components used in our artifacts. The
Body component has a size of 28 bytes. It consists of two
vectors and three floats. The Collideable component consist
of one float, having a size of 4 bytes. The Renderable
component consist of a smart pointer to a shape, the size of
this component is 8 bytes. The Circle component is built on
the other components i.e. Body, Collideable and Renderable
having a size of 40 bytes.

Components

Body

Vector2f	position
Vector2f	direction
float	rotation
float	ratationd
float	alpha

Renderable

shared_ptr<sf::Shape>

Collideable

float	radius

Circle

Body	body
Renderable	rend
Collidable	coll

Figure 6: Describes the components used by our artifacts.

D. Data collection

Each benchmark records the rendered time per frame in
milliseconds. The recorded time is calculated and stored as
floats in a vector. After the benchmark finishes the floats
are written to a text file. The benchmarks are executed for
10 seconds with different amount of entities. Therefore each
benchmark will produce a different amount of frames. A
benchmark with few entities will produce many frames while
a benchmark with many entities will produce less. In other
words, the sample size will differ for each benchmark.

1) Implementation of render time measurement: Before the
game loop the current time is taken by using the clock from the
C++ standard library. After the game loop the elapsed time is
stored and the time taken between is calculated. The measured
time is stored in a vector using the push back function in the
C++ standard vector library.

2) Implementation of writing to file: A C++ standard li-
brary vector of floats is declared globally. At the end of the
benchmark i.e after 10 000 milliseconds the data is streamed
to a text file.

E. A quantitative data analysis

The benchmarks in this thesis are measuring how much
time it takes for a frame to be rendered in milliseconds. An
average value is calculated and presented through diagrams.
The diagrams show a comparison of both the artifacts in render
time per frame, render time per entity and performance gained
of the data-oriented artifact in milliseconds. The amount of
entities we decided to test is based upon reasonable amounts
of objects in a game scene.

F. Limitations

The benchmarks will only measure the time taken per
rendered frame in milliseconds. This metric is stored as a float.
The range in object’s sizes is between 4 bytes and 40 bytes.
All benchmarks are executed in the same environment for the
same amount of time. The artifacts used in the benchmarks
are equal in implementation other than one being data-oriented
and the other object-oriented. An important aspect regarding
the benchmarks is that we are assuming that CPU prefetches
are made sequentially. Since prefetches are CPU dependant
we cannot guarantee the actual process of prefetchning made
by the CPU in the benchmarks without taking our CPU in
account. This is the reason for choosing to only measure the

5

time per frame rendered in milliseconds and conducting all
experiments using the same computer. Benchmarks range from
from 500 entities to 10 000 entities, by the increments of 500
entities each benchmark.

IV. DATA

A. Artifact

Pseudo code for the artifact below, describing every frame
in the game loop. Figure 12 shows an artifact with all the
systems implemented running 1000 entities.

I m p l e m e n t a t i o n p e r f rame i n pseudo code of bo th
a r t i f a c t s

i n t c = 0 ;
Count e n t i t i e s , s t o r e i n v a r i a b l e c

f o r i := 0 t o a m o u n t O f E n t i t e s − c
C r e a t e an E n t i t y X e n t i t y
Add t o E n t i t y X memory poo l
Ass ign components t o e n t i t i e s

f o r i := 0 t o e n t i t i e s
Handle movement

f o r i := 0 t o e n t i t i e s
Handle bounc ing on s c r e e n bounds

f o r i := 0 t o e n t i t i e s
Check c o l l i s i o n s

i f (c o l l i s i o n)
E n t i t y X i n a c t i v a t e s e n t i t y

f o r i := 0 t o e n t i t i e s
Render e n t i t i e s wi th SFML

B. Benchmarks

Figure 7, 8 and 9 presents the results provided by run-
ning the benchmarks using our research approach. Figure 10
presents detailed information regarding the benchmarks. The
measurements give an error of less than 1.2% with a 95%
confidence interval. Figure 11 presents information about the
amount of frames collected for each benchmark.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

5
0
0

1
0
0

0

1
5
0

0

2
0
0

0

2
5
0

0

3
0
0

0

3
5
0

0

4
0
0

0

4
5
0

0

5
0
0

0

5
5
0

0

6
0
0

0

6
5
0

0

7
0
0

0

7
5
0

0

8
0
0

0

8
5
0

0

9
0
0

0

9
5
0

0

1
0
0

0
0

M
il

li
se

co
n
d

s

Entities

Object-oriented design

Data-oriented design

Figure 7: Benchmarks ranging from 500 entities to 10 000
entities. Average render timer per frame.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ic

ro
se

co
n
d

s

Entity

Time per entity (microsec)

Object-oriented design

Time per entity (microsec)

Data-oriented design

Time per entity (microsec)

Difference

Figure 8: Average render time per entity per frame and
difference in time per entity.

-0.5

1.5

3.5

5.5

7.5

9.5

11.5
M

il
li

se
co

n
d
s

Entities

Figure 9: Performance gained per frame in milliseconds
using the data-oriented artifact

Figure 10: Detailed information about Figure 7.

6

Figure 11: Collected frames for each benchmark.

Figure 12: Screenshot of our artifact running 1000 entities.

V. DISCUSSION

This section is about the performance of our data-oriented
and object-oriented artifacts.

A. Prelude

What determines the reading and writing speed of data
is the hardware connecting it and or storing it. Furthermore
there is a difference in clock speed between the CPU and
DRAM. The bottleneck introduced is that the CPU might
have to wait hundreds of cycles for a single byte if the
data does not reside in its own cache. Data locality could
improve performance because it should minimize the amount
of cache misses occurring in run time i.e. improving the
cache coherence. Before writing this thesis, we suspected that
data-oriented artifact would be faster than the object-oriented
artifact. What we didn’t know was if our data-oriented artifact
was faster than our object-oriented artifact and if so how much
faster.

A game running in ∼60 fps requires all computations to
be finished within ∼16 ms. Suppose that a function takes

1ms and all functions in the systems are equally fast. This
would mean that the budget is 16 functions. A function could
be handling the movement of game objects among other
tasks. These functions would have to be efficient to keep
within the time limit. Failing to make them efficient will
affect the fps. As shown in Figure 10, it takes about ∼15ms
for the game loop to finish running with 4500 entities with
the object-oriented artifact. That is about ∼1ms slower per
rendered frame compared to the data-oriented implementation.
This time could be spent better on other resources, such
as controlling a population with artificial intelligence. The
relation seen in the benchmarks did not correspond fully with
our hypothesis. The data-oriented artifact renders frames faster
than the object-oriented artifact when the amount of entities
is over 3500.

B. Performance

By looking at the results of the benchmarks, the data-
oriented artifact running over 3500 entities resulted in lower
render times per frame than the object-oriented artifact. The
object-oriented artifact running up to 3500 entities resulted
in similar or lower render times per frame than the data-
oriented artifact. A possible explanation for the performance
gain of the object-oriented artifact when running an amount
of entities under 3500 could be that relevant data resides in
the cache. This is partly supported by looking at the result
after multiplying 3000 entities with 40 bytes. This equals
120000 bytes which fits inside the level 1 cache. Therefore
the performance of the two artifacts are very similar under
3500 entities. If this is the case, it means that the CPU does
not have to fetch data from memory. But when the entities
exceed 3500 in amount, it would seem that the required data
for the next instruction does not longer fit in the CPU cache.
By multiplying 3500 with 40 bytes which equals 140000,
which is bigger than the level 1 cache storage. This possibly
leads to a cache miss, meaning the CPU can’t process its
next instruction without fetching new data from memory. But
in the case of the data-oriented artifact the data is possibly
more efficiently aligned resulting in fewer cache misses when
running a large amount of entities, in this case over 3500
entities. For clarification, the components, such as the body
component, is stored in an array which in turn aligns the data
efficiently. For example if data about the body component is
required to perform an operation, the only array that needs
to be traversed is the array containing body components. In
the object-oriented artifact the components has been stripped
down and put together into a single class to describe the object
Circle. Therefore if in need of data regarding the body of
Circle or any other property residing in Circle, the traversal
of the array containing Circles is required to find the specific
data and then use and or modify that data for an operation.

Figure 8 shows a quadratic curve. This is due to the
collisions in the benchmarks having a quadratic time com-
plexity. The collisions affected the benchmarks results but if
the collisions would be removed, the artifacts wouldn’t be as
game-like. Since they affect, on average, the results in the
same degree, the results are valid.

7

C. Summary

To summarize, the experiments show that there is a relation
to data locality and performance. Our method of collecting
data could possibly have been improved by collecting the same
amount of data (frames) per benchmark. This would improve
the confidence interval of the benchmarks. By conducting
benchmarks on data-oriented and object-oriented artifacts us-
ing entity component system the research question could be
answered. The contribution is showing that when running
benchmarks with an amount of entities over 3500 our data-
oriented artifact provided better performance than our object-
oriented artifact when using EntityX.

VI. CONCLUSION

This paper set out to compare the performance of a data-
oriented artifact and an object-oriented artifact. The bench-
marks show that the data-oriented artifact is faster than the
object-oriented running amounts of entities over 3500. Ad-
dressing this is an important contribution to contemporary
game developers. This thesis has mostly focused on perfor-
mance and the performance gained by data-oriented design
artifacts implies that the findings are likely to be of importance
to game developers. Furthermore it is important to developers
having an interest of increasing performance or learning more
about data locality.

In terms of future research we particularly suggest perform-
ing benchmarks while recording the number of CPU cache
misses in an object-oriented designed artifact compared to a
data-oriented. This is important to further present a possible
performance gain by applying data-oriented design when de-
veloping performance-reliant applications such as games. The
recording of the amount of CPU cache misses can be done
within Visual Studio, an integrated development environment.
Furthermore performing benchmarks in 3D environments,
preferably in AAA video games [23], to be able to show the
gain in performance of data-oriented design in large games.
Furthermore about future work could be examining if bloating
up the objects size to see if it breaks the cache performance.

In the following two sections, this thesis conclusions will
be presented.

A. Results

1) Data-oriented artifact: Data-oriented artifact shown to
be faster in benchmarks running over 3500 entities, presented
in Figure 7, 8, 9, 10. This implies that its worth considering
a data-oriented approach when developing games that are in
need of performance.

2) Object-oriented artifact: The object-oriented artifact
shown to be very similar in performance when running less
than 3500 entities, presented in Figure 7, 8, 9, 10. This implies
that the data fits in the CPU cache when running up to
approximately 3500 entities in our artifact.

REFERENCES

[1] Alex Beimler. Ecs benchmarks, 2014. Available at:
https://github.com/abeimler/ecs_benchmark/. [Accessed: 2019-04-
11].

[2] Carlos Carvalho. The gap between processor and memory speeds.
Semantic Scholar, 2002. Universidade do Minho, Braga, Portugal.

[3] Giovanni Giuseppe Costa. Battlecity2014, 2014. Available at:
https://github.com/ggc87/BattleCity2014/. [Accessed: 2019-04-16].

[4] CPUID. Cpu-z system information software. Available at:
https://www.cpuid.com/softwares/cpu-z.html. [Accessed: 2019-06-12].

[5] Marc Erich Latoschik Dennis Wiebush. Decoupling the entity-
component-system pattern using semantic traits for reusable realtime
interactive systems. In 8th on Software Engineering and Architectures
for Realtime Interactive Systems, 2015.

[6] Dice. Introduction to data-oriented design, 2014. Available at:
https://www.dice.se/wp-content/uploads/2014/12/Introduction_to_Data-
Oriented_Design.pdf. [Accessed: 2019-06-16].

[7] Giovani Milanez Espindola. Spacetd, 2015. Available at:
https://github.com/giovani-milanez/SpaceTD/. [Accessed: 2019-04-16].

[8] Walid Faryabi. Data-oriented design approach for processor
intensive games. Master’s thesis, Norwegian University
of Science and Technology, https://brage.bibsys.no/xmlui/,
2018. Available at: https://ntnuopen.ntnu.no/ntnu-
xmlui/bitstream/handle/11250/2575669/18676_FULLTEXT.pdf?sequence=1.
[Accessed: 2019-04-16].

[9] Alexander Fox. Why cpu clock speed isn’t increasing, 2018.
Available at: https://www.maketecheasier.com/why-cpu-clock-speed-
isnt-increasing/. [Accessed: 2019-04-16].

[10] Gamesfromwithin. Data-oriented design (or why you might be
shooting yourself in the foot with oop), 2009. Available at:
http://gamesfromwithin.com/data-oriented-design. [Accessed: 2019-06-
16].

[11] Tord Eliasson Kim Svensson Sand. A comparison of functional and
object-oriented programming paradigms in javascript. DIVA, 6 2017.
Blekinge Tekniska Högskola. Karlskrona, Sweden.

[12] Guy W. Lecky-Thompson. Video game design revealed. Cengage
Learning, https://www.cengage.co.uk/, 2008. Page 117.

[13] Lucas Meijer. On dots: Entity component system, 2019. Avail-
able at: https://blogs.unity3d.com/2019/03/08/on-dots-entity-component-
system/. [Accessed: 2019-04-16].

[14] Microsoft. Visual studio ide, 2019. Available at:
https://visualstudio.microsoft.com/. [Accessed: 2019-04-10].

[15] Robert Nystrom. Game programming patterns, 2009. Available at: http:
//gameprogrammingpatterns.com/. [Accessed: 2019-04-16].

[16] Briony J Oates. Researching Information Systems And Computing.
SAGE Publications, 2005.

[17] Simple and Fast Multimedia Library. Sfml. Available at:
https://www.sfml-dev.org/. [Accessed: 2019-04-16].

[18] Simple and Fast Multimedia Library. Sfml projects, 2015. Available at:
https://sfmlprojects.org/. [Accessed: 2019-04-16].

[19] Trans-Neptunian Studios. Triangulum, 2014. Available at:
https://github.com/TransNeptunianStudios/Triangulum/. [Accessed:
2019-04-16].

[20] Alec Thomas. Entityx, 2014. Available at: Available at:
https://github.com/alecthomas/entityx/ [Accessed: 2019-04-11].

[21] Will Usher. Asteroids, 2017. Available at:
https://github.com/Twinklebear/asteroids/. [Accessed: 2019-04-16].

[22] Olof Wallentin. Component-based entity systems modular object con-
struction and high performance gameplay. DIVA, 2014. Uppsala
Universitet. Uppsala, Sweden.

[23] Wikipedia. Aaa (video game industry), 2019. Available at:
https://en.wikipedia.org/wiki/AAA_(video_game_industry). [Accessed:
2019-04-19].

http://gameprogrammingpatterns.com/
http://gameprogrammingpatterns.com/

	Introduction
	Background and related work
	Object oriented
	Data oriented
	Entity Component System
	Related work

	Method
	Methodological background
	Research setting
	Entity Component System - EntityX
	Simple and Fast Multimedia Library - SFML
	Integrated SFML with EntityX on Windows 10 Home

	Research approach
	The benchmarks
	Systems
	Components

	Data collection
	Implementation of render time measurement
	Implementation of writing to file

	A quantitative data analysis
	Limitations

	Data
	Artifact
	Benchmarks

	Discussion
	Prelude
	Performance
	Summary

	Conclusion
	Results
	Data-oriented artifact
	Object-oriented artifact

	References

